Electrochemical Behavior of Tetraethylammonium Bis(oxalato)borate in Electric Double-Layer Capacitor Investigated by Using Transmission-Line Model
نویسندگان
چکیده
منابع مشابه
Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance
Articles you may be interested in Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors Effect of nano-filler on the performance of multiwalled carbon nanotubes based electrochemical double layer capacitors Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor app...
متن کاملElectric double-layer capacitor based on an ionic clathrate hydrate.
Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materia...
متن کاملA Neutron Diffraction Study of the Electrochemical Double Layer Capacitor Electrolyte Tetrapropylammonium Bromide in Acetonitrile.
Neutron diffraction with isotopic substitution has been used to characterize the bulk liquid structure of the technologically relevant electrolyte solution, 1 M tetrapropylammonium bromide (TPA Br) in acetonitrile (acn), and of pure deuterated acetonitrile. Empirical potential structure refinement modeling procedures have been used to extract detailed structural information about solvent-solven...
متن کاملReversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy.
The reversible phase transformation is reported from hexagonal to monoclinic structure responding to the intercalation/deintercalation of Na(+) between MnO(2) nanosheets upon potential cycling in aqueous electrolyte via an in situ Raman technique. This structural evolution will influence the Na(+) diffusion process in MnO(2) nanosheets and cause phase retention during the self-discharge process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochemistry
سال: 2007
ISSN: 2186-2451,1344-3542
DOI: 10.5796/electrochemistry.75.656